2.3: The Function e^jθ and the Unit Circle (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    9956
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Let's try to extend our definitions of the function \(e^x\) to the argument \(x=jΘ\). Then \(e^{jΘ}\) is the function

    \[e^{jθ}=lim_{n→∞}(1+j\frac θ n)^n \nonumber \]

    The complex number \(1+j\frac θ n\) is illustrated in the Figure. The radius to the point \(1+j\frac θ n\) is \(r=(1+\frac {θ^2} {n^2})^{1/2}\) and the angle is \(φ=\tan^{−1}\frac θ n\)

    This means that the nth power of \(1+j\frac θ n\) has radius \(r^n=(1+\frac {θ^2} {n^2})^{n/2}\) and angle \(nφ=n\;\tan^{−1}\frac θ n\) (Recall our study of powers of z.)

    Therefore the complex number \((1+j\frac θ n)^n\) may be written as

    \[(1+j\frac θ n)^n=(1+\frac {θ^2} {n^2})^{n/2}[\cos(n\;\tan^{−1}\frac θ n)+j\sin(n\tan^{−1}\frac θ n)] \nonumber \]

    For \(n\) large, \((1+\frac {θ^2} {n^2})^{n/2}2≅1\), and \(n\tan^{−1}\frac θ n≅n \frac θ n=θ\). Therefore \((1+j\frac θ n)^n\) is approximately

    \[(1+j\frac θ n)^n=1(\cosθ+j\sinθ) \nonumber \]

    This finding is consistent with our previous definition of \(e^{jθ}\) !

    2.3: The Function e^jθ and the Unit Circle (2)

    The series expansion for \(e^{jθ}\) is obtained by evaluating Taylor's formula at \(x=jθ\):

    \[e^{jθ}=∑_{n=0}^∞\frac 1 {n!}(jθ)n \nonumber \]

    When this series expansion for \(e^{jθ}\) is written out, we have the formula

    \[e^{jθ}=∑^∞_{n=0}\frac 1 {(2n)!} (jθ)^{2n}+∑^∞_{n=0}\frac 1 {(2n+1)!}(jθ)^{2n+1} = ∑^∞_{n=0}\frac {(−1)^n} {(2n)!} θ^{2n}+j∑^∞_{n=0}\frac {(−1)^n}{(2n+1)!} θ^{2n+1} \nonumber \]

    It is now clear that \(\cosθ\) and \(\sinθ\) have the series expansions

    \[\cosθ=∑^∞_{n=0}\frac {(−1)^n} {(2n)!} θ^{2n} \nonumber \]

    \[\sinθ=∑_{n=0}^∞\frac {(−1)^n} {(2n+1)!} θ^{2n+1} \nonumber \]

    When these infinite sums are truncated at N−1, then we say that we have N-term approximations for \(\cosθ\) and \(\sinθ\):

    \[\cosθ≅∑^{N−1}_{n=0} \frac {(−1)^n} {(2n)!} θ^{2n} \nonumber \]

    \[\sinθ≅∑_{n=0}^{N−1} \frac {(−1)^n} {(2n+1)!} θ^{2n+1} \nonumber \]

    The ten-term approximations to \(\cosθ\) and \(\sinθ\) are plotted over exact expressions for \(\cosθ\) and \(\sinθ\) in the Figure. The approximations are very good over one period \((0≤θ≤2π)\), but they diverge outside this interval. For more accurate approximations over a larger range of θ′s, we would need to use more terms. Or, better yet, we could use the fact that \(cosθ\) and \(sinθ\) are periodic in θ. Then we could subtract as many multiples of \(2π\) as we needed from θ to bring the result into the range \([0,2π]\) and use the ten-term approximations on this new variable. The new variable is called θ-modulo \(2π\).

    2.3: The Function e^jθ and the Unit Circle (3)
    Exercise \(\PageIndex{1}\)

    Write out the first several terms in the series expansions for \(\cosθ\) and \(\sinθ\).

    Demo 2.1 (MATLAB)

    Create a MATLAB file containing the following demo MATLAB program that computes and plots two cycles of \(\cosθ\) and \(\sinθ\) versus θ. You should observe Figure. Note that two cycles take in \(2(2π)\) radians, which is approximately 12 radians.

    clg;
    j = sqrt(-1);
    theta = 0:2*pi/50:4*pi;
    s = sin(theta);
    c = cos(theta);
    plot(theta,s);
    elabel('theta in radians');
    ylabel('sine and cosine');
    hold on
    plot(theta,c);
    hold off

    2.3: The Function e^jθ and the Unit Circle (4)
    Exercise \(\PageIndex{2}\)

    (MATLAB) Write a MATLAB program to compute and plot the ten-term approximations to \(\cosθ\) and \(\sinθ\) for θ running from 0 to \(2(2π)\) in steps of \(2π/50\). Compute and overplot exact expressions for \(\cosθ\) and \(\sinθ\). You should observe a result like the Figure.

    The Unit Circle

    The unit circle is defined to be the set of all complex numbers z whose magnitudes are 1. This means that all the numbers on the unit circle may be written as \(z=e^{jθ}\). We say that the unit circle consists of all numbers generated by the function \(z=e^{jθ}\) as θ varies from 0 to \(2π\). See below Figure.

    A Fundamental Symmetry

    Let's consider the two complex numbers \(z_1\) and \(\frac 1 {z^∗_1}\), illustrated in Figure. We call \(\frac 1 {z^∗_1}\)the “reflection of z through the unit circle” (and vice versa). Note that \(z_1=r_1e^{jθ_1}\) and \(\frac 1 {z^∗_1} = \frac 1 {r_1e^{jθ_1}}\). The complex numbers \(z_1−e^{jθ}\) and \(\frac 1 {z^*_1} −e^{jθ}\) are illustrated in the Figure below. The magnitude squared of each is

    \[|z_1−e^{jθ}|^2=(z_1−e^{jθ})(z^∗_1−e^{−jθ}) \nonumber \]

    \[|\frac 1 {z^*_1} −e^{jθ}|^2=(\frac 1 {z^*_1−e^{jθ}})(\frac 1 {z_1} −e^{−jθ}) \nonumber \]

    The ratio of these magnitudes squared is

    \[β^2=\frac {(z_1−e^{jθ})(z^∗_1−e^{−jθ})} {(\frac 1 {z^*_1}−e^{jθ})(\frac 1 {z_1} −e^{−jθ})} \nonumber \]

    This ratio may be manipulated to show that it is independent of θ, meaning that the points \(z_1\) and \(\frac 1 {z^∗_1}\) maintain a constant relative distance from every point on the unit circle:

    \[β^2=\frac {e^{jθ}(e^{−jθ}z_1−1)(z^∗_1e^{jθ}−1)e^{−jθ}} {\frac {1} {zi} (1−e^{jθ}z^∗_1)(1−z_1e^{−jθ}) \frac 1 z_1} = |z_1|^2 \;,\;\mathrm{independent} \;\mathrm{of}\;θ! \nonumber \]

    This result will be of paramount importance to you when you study digital filtering, antenna design, and communication theory.

    2.3: The Function e^jθ and the Unit Circle (5)
    Exercise \(\PageIndex{3}\)

    Write the complex number \(z−e^{jθ}\) as \(re^{jφ}\). What are \(r\) and \(φ\)?

    2.3: The Function e^jθ and the Unit Circle (2024)

    References

    Top Articles
    Rogold Extension
    Is Costco Gas Good? Quality, Cost & Benefits | Ridester
    Craigslist San Francisco Bay
    Occupational therapist
    Rabbits Foot Osrs
    Mama's Kitchen Waynesboro Tennessee
    Southeast Iowa Buy Sell Trade
    2022 Apple Trade P36
    Free Robux Without Downloading Apps
    Devourer Of Gods Resprite
    Otr Cross Reference
    Lima Crime Stoppers
    Palace Pizza Joplin
    Oppenheimer Showtimes Near Cinemark Denton
    อพาร์ทเมนต์ 2 ห้องนอนในเกาะโคเปนเฮเกน
    2024 Non-Homestead Millage - Clarkston Community Schools
    Dutchess Cleaners Boardman Ohio
    Gma Deals And Steals Today 2022
    Luna Lola: The Moon Wolf book by Park Kara
    Who called you from 6466062860 (+16466062860) ?
    Missed Connections Dayton Ohio
    NBA 2k23 MyTEAM guide: Every Trophy Case Agenda for all 30 teams
    Craigslist Southern Oregon Coast
    I Saysopensesame
    Iroquois Amphitheater Louisville Ky Seating Chart
    U Of Arizona Phonebook
    Craigslist Apartments Baltimore
    [PDF] PDF - Education Update - Free Download PDF
    1773x / >
    Buhl Park Summer Concert Series 2023 Schedule
    Craigslist Comes Clean: No More 'Adult Services,' Ever
    Things to do in Pearl City: Honolulu, HI Travel Guide by 10Best
    Japanese Emoticons Stars
    Shoe Station Store Locator
    2430 Research Parkway
    Where Can I Cash A Huntington National Bank Check
    ShadowCat - Forestry Mulching, Land Clearing, Bush Hog, Brush, Bobcat - farm & garden services - craigslist
    The Ride | Rotten Tomatoes
    B.k. Miller Chitterlings
    Directions To 401 East Chestnut Street Louisville Kentucky
    Weapons Storehouse Nyt Crossword
    Search All of Craigslist: A Comprehensive Guide - First Republic Craigslist
    Letter of Credit: What It Is, Examples, and How One Is Used
    Lonely Wife Dating Club בקורות וחוות דעת משתמשים 2021
    Anderson Tribute Center Hood River
    COVID-19/Coronavirus Assistance Programs | FindHelp.org
    Content Page
    Vintage Stock Edmond Ok
    Academic Notice and Subject to Dismissal
    Ssc South Carolina
    Wood River, IL Homes for Sale & Real Estate
    When Is The First Cold Front In Florida 2022
    Latest Posts
    Article information

    Author: Aron Pacocha

    Last Updated:

    Views: 5921

    Rating: 4.8 / 5 (68 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Aron Pacocha

    Birthday: 1999-08-12

    Address: 3808 Moen Corner, Gorczanyport, FL 67364-2074

    Phone: +393457723392

    Job: Retail Consultant

    Hobby: Jewelry making, Cooking, Gaming, Reading, Juggling, Cabaret, Origami

    Introduction: My name is Aron Pacocha, I am a happy, tasty, innocent, proud, talented, courageous, magnificent person who loves writing and wants to share my knowledge and understanding with you.